ПОСТСЕДИМЕНТАЦИОННЫЙ ЛИТОГЕНЕЗ ТЕРРИГЕННЫХ КОМПЛЕКСОВ И ПАЛЕОТЕКТОНИКА

О.В. Япаскурт, Ю.В. Ростовцева, Е.В. Карпова
Геологический факультет МГУ им. М.В. Ломоносова
119992, Москва, ГСП-2, Ленинские горы
E-mail: ypaskurt@geol.msu.ru
Поступила в редакцию 4 ноября 2002 г.

Разработан вариант геодинамической типизации постседиментационных преобразований. Они сгруппированы в 2 надтипа: фоновый литогенез погружения (ЛП) и наложенные, вторичные изменения (ВИ). Главный признак ЛП — вертикальная прогрессивная зональность аутигенного минералогенеза и трансформаций организационного вещества, в разной степени коррелируемая: с палеоглубинностью, температурным градиентом, ростом давлений литостатических (Ps) и флюидных (Pf), при Ps = Pf. Важные факторы — скорости погружения (Vp), компенсируемость (kp) или некомпенсируемость (nk) впадины осадками. Описаны подтипы: ЛП-1.1 — Vp=10–100 м/мл лет, kr (внутрикратонные апликогены, синеклизы); ЛП-1.2 — то же, с прерывистым малоамплитудным погружением (антеклизы); ЛП-2.1 — Vp=100–1000 м/мл лет, кр, либо слабая пв (рифтеновые и надрифтеновые депрессии молодых плит); ЛП-2.2 — Vp>1000 м/мл лет, nk (нагрузенные континентальные охваны и др.). Для ЛП-2.1 и 2.2 характерна незавершенность стадии диагенеза и четкая зональность катагенеза; интенсивны процессы дифференциации вещества, включая продукты трансформаций терригенных мусковитов (считающихся традиционно "устойчивыми"). У остальных подтипов зональность нечетка, так как преобразования пород зависят от их факционально-генетической принадлежности больше, чем от факторов палеоглубинности. В отличие от ЛП, все ВИ афациальные. Они стимулируются импульсами усиления открытости породо-флюидной системы, при Ps>>Pf; коррелируемы не с палеоглубинностью, но с палеотемпературными аномалиями. Эти типы: ВИ-1 — низкотемпературные (каолинизация, карбонатизация и др.) над разломами или в седлах дислоцированных структур; ВИ-2 и ВИ-3 — высокотемпературные, соответственно, в бортах рифтогенных впадин и складчатых поясах, образующих кратоны. ВИ-2,3 представлены неравновесными минерально-структурными парагенезами стадии метагенеза (ан-химетаморфизма). Они стадиальны и по времени отделены от катагенеза. Их целесообразно рассматривать как продукты раннего метаморфизма, наложенного на ЛП в режиме эндогенных Ps-t° активаций осадочного бассейна. Единый бассейн за период своего эволюционирования претерпел смену разных ЛП и ВИ, коррелируемых с этапностью изменения геодинамических режимов — это описано на примерах конкретных структур Русской, Западно-Сибирской плит и Верхоянского подвижного пояса. Из этого следует, что признаки сочетания выделяемых ЛП и ВИ могут учитываться применительно к палеодинамическим реконструкциям древних объектов.

Ключевые слова: литогенез, диагенез, катагенез, метагенез, метаморфизм, постседиментационные преобразования, вторичные изменения, бассейны породообразования, геодинамика, типизация.

THE POST-SEDIMENTATION LITHOGENESIS OF THE TERRIGENOUS COMPLEXES AND THE PALEOTECTONICS

O.V. Yapaskurt, Y.V. Rostovseva, E.V. Karpova
Department of geology, Moscow State University

The variant of the geodynamic typization of the post-sedimentation transformations is worked out. They are grouped into 2 types: the phonic lithogenesis of burial (LB) and the secondary alterations (SA). The major feature of the LB is vertical prograde zoning of the authigenic mineral formation and
transformation in organic material, which is correlated in different extent with paleodepth (D), thermal gradient (t0), increase of lithostatic (Ps) and fluid (Pf) pressures at Ps=Pf. The most important factors are the rate of burial (Vp), an ability to be compensated (kp) or not compensated (nk) of the basin by sediments. The following types are described: LB-1.1 – Vp=10–100 m/ Ma, kp (intracratic aulacogene, synclise), LB-1.2 – Vp=100–1000 m/ Ma, kp or slight nk (rift or over-rift depressions of young plates), LB-2.2 – Vp>1000 m/ Ma, nk (passive continental margins, etc.). For LB-2.1 and 2.2, the stage of lithogenesis is not completed and the distinct zoning of catagenesis is observed. The processes of differentiation of material, including the products of transformation in terrigenous muscovites (which were traditionally considered to be stable). Other types show less distinct zoning, since the rock transformations depend on their facial and genetic peculiarities much more intensively than on the factor D. In contrast to LB, all SA are afacial. They are stimulated by impulses of an increase of openness of the rock-fluid system, at Ps>>Pf. They are not correlated with D, but with paleo-t° anomalies. These types are SA-1 – low-t° (kaolinitization, carbonation) over faults or in arches of dislocated structures; SA-2 and SA-3 – high-t°, respectively, in walls of rift depressions and fold belts forming cratons. SA-2,3 are presented by non-equilibrated mineral and structural parageneses of the metagenesis (anchimetamorphism). They are separated from catagenesis by stages and time. They should be considered as the products of the early metamorphism, imposed on the LB in the regime of endogenic Ps-t° activation of sedimentary basins. During the evolution, the separate basin proceeded through different LB and SA, correlated by the stages of geodynamic regimes. That is exemplified by some structures of the Russian and the West-Siberian plates and the Verkhoyanskii fold belt. It means that the features of combination of LB and SA can be applied for the paleogeodynamic reconstruction of ancient objects.

Key words: lithogenesis, diagenesis, catagenesis, metagenesis, metamorphism, post-sedimentation transformations, basins of the rock formation, geodynamics, typization.

В XXI веке наметился новый аспект в актуальной проблеме причинно-следственных соотношений между осадочными и тектоническими процессами. Эта проблема привлекла к себе внимание на протяжени в второй половине XX века многих крупных литогеологов и тектонистов (В.В. Белоусова, Л.В. Пустовалова, Л.Б. Рукина, А.Б. Ронова и В.Е. Ханина, Н.М. Старкова, Г.А. Каледы, Г.Ф. Крашенинникова, Н.П. Тимофеева, А. Митцела и Х. Рединга, С.И. Романовского, Р.К. Селлин, Б.А. Соколова и др.). Однако они, в подавляющем большинстве своём, обращались к закономерностям влияния геодинамических режимов только на седиментогенез, посредством известной методики сравнительных анализов мощностей и фаун осадочных комплексов. Стадии постседиментационного литогенеза (диагенеза, катагенеза) и наложенного на них метагенеза рассматривались в том же аспекте гораздо реже. В основном это были труды А.Г. Коссовской и В.Д. Шутова [1976].

Между тем многофакторные постседиментационные изменения осадочных толщ заключают в себе богатейшую и не исчерпанную информацию о многих особенностях геодинамического эволюционирования литосферных блоков. Такой аспект проблемы стал привлекать к себе литогенез. За минувшее 7-летие в научных публикациях на эту тему появились разрозненные сведения применительно к отдельным, изученным с неоднократной детальностью, регионам – в основном на севере Сибири, в Якутии, в Предкавказье, Казахстане, Средней Азии, местами на Европейской части России и в Белоруссии [Гончаров и др., 1995; Лукьянова, 1995; Макна, 2000; Симанович, 2000; Цеховский, 2000; Япакарт, 1999, 2000, 2002; Япакurt и др., 2002].

Возникла насущная потребность систематизировать все имеющиеся сегодня результаты в этой области исследования, проанализировать принципы своеобразия постседиментационного преобразования осадочных формаций из разнотипных палеобассейнов (континентальных и океанических) и конкретизировать признаки геодинамических режимов, запечатленных в вышеупомянутых породных преобразованиях.

Это зарождающееся направление исследований мы будем предварительно именовать как “геодинамическая типизация литогенеза”.

40
Постседиментационный литогенез территориальных комплексов и палеотектоника

Литогенез рассматривается как совокупность многофакторных процессов эстественной историко-геологической эволюции флюидно-породной системы бассейна осадочного породообразования (БП) в стратисфере (т. е. ниже уровня седиментогенеза и гипергенеза). Он включает в себя стадии: диагенеза и катагенеза. Их, в определенных геодинамических условиях, условиями, установленными, или вторичные изменения стадий метагенеза и раннего (зеленосланцевого) метаморфизма (и. н.) ниже. В данном здесь определении категории БП не адекватна бытовым понятиям: “осадочный бассейн” (ОБ) и “седиментационный бассейн” (СБ). Последний охватывает или охватывал в геологическом прошлом площадь, значительно большую сравнительно с размерами горизонтальной проекции постседиментационного БП. Территория СБ включает (включала) области: 1 – гипергенной мобилизации осадочного вещества (водосборы, или “питающие провинции”), 2 – его транспортировки в конечный водослив стока и 3 – дна этого водоема. Из них только третьи область отчасти прослеживается в БП, который представляет собой фрагмент отложений СБ, которые сохранялись от всяческих инверсационных деструкций СБ и денудаций, т. е. находятся внутри палеотектонической депрессии. В такой трактовке понятие ОБ представляется обобщаемым термином свободного задания БП.

Исследователь четвертичных образований имеет дело только с БП или с их фрагментами, по которым он реконструирует палеогеографию прежних СБ и палеотектоническое эволюционирование всей системы ОБ как составного элемента стратисферы.

Обычно БП имеют в вертикальных сечениях формы линзовидные, чередующиеся, клиновидные, либо галечные, с максимальными толщинами в пределах от первых сотен до многих тысяч метров. Почти каждый БП на протяжении геологической истории своего существования (длительностью в десятки и сотни миллионов лет) претерпевал структурно-морфологические изменения различной интенсивности. В одних случаях это могли быть: изменения темпов погружения дна бассейна, тектонические паузы, инверсивные взаимодействия или горизонтальные смещения, сопровождаемые магматическими ликвативными и разрывными дислокациями осадочного выполняния БП; а в иных – коренные изменения структуры БП, вплоть до его полного превращения в элемент покровно-складчатого сооружения.

В течение всего времени эволюционирования структуры БП внутри него реализуются дискретные, многообразие механизмы дифференциации вещества, приводящие к формированию постседиментационных минеральноструктурных парагенезов. Они бывают частично унаследованными от условий седиментогенеза, частично имеют наложенный (аффинальный) характер. Их конкретные проявления обусловливаются множеством факторов: фациально-вещественными особенностями конкретной соленосной формации, палеозонами и темпами её погружения, величинами палеотеппературных градиентов, интенсивностями структурных нарушений при перестройках тектонической структуры БП, влияниями флюидов из нижележащих геосфер, влиянием магматизма и др. Конкретные описания, ранжирование этих факторов литогенеза и схем их влияний на процессы породообразования приведены в недавних работах [Симанович, 2000; Япакурт, 1999, 2000]. Обобщая все это, можно констатировать, что выполняющиеся БП осадочные формации являются самими по себе флюидогенерирующими системами, и, одновременно, они могут пропускать потоки флюидов из нижележащих комплексов. Этому способствуют некоторые новообразования в литефицированных слоях: швы флюидоразрыва, текстуры клюважа и тектонически осадочные зоны различной морфологии. Малейшие нарушения баланса компонентов в такой органо-минерально-флюидной системе, обусловленные перестройками тектонической структуры БП, стимулируют аутогенные минералогенез и (или) деструкцию компонентного состава осадочных пород, для карбонатов, кварца, карбонатных и цементов силикатов; трансформации кристаллических решеток глинистых и других минералов.

То есть, постседиментационные преобразования отложений реагируют (явно, либо малозаметно) на любые изменения геодинамических режимов, что подтверждено многими исследованиями разнообразных конкретных БП. Данное заключение чрезвычайно важно для формулировки сущности первоочередных задач развивающегося научного направления. Конечная цель сводится к систематизации признаков влияния множества факторов экзогенной и эндогенной природы на постседиментационные
процессы породообразования и разработке детальной схемы их типизации. Достижение такой цели позволило бы, во-первых, внести существенный вклад в методику решения обратных задач — реконструирования палеогеодинамических обстановок эволюционирования древних бассейнов с учетом специфики постседиментационного преобразования их осадков; во-вторых, это способствовало бы развитию теории взаимосвязи и взаимообусловленности экзогенных и эндогенных процессов осадочного породообразования (рудообразования, в том числе) и породного дислоцирования. Однако конкретное воплощение этих задач осложняется рядом трудно решаемых вопросов: по какому принципу строить литогенетическую типизацию, какие факторы считать при этом ведущими и как вообще оценивать баланс воздействия на породы множества факторов, из которых не все могут быть известными или для нас очевидными?

Наш предварительный исследования позволили прийти к однозначному ответу на эти вопросы: поскольку факторные влияния на литогенез интегрируются тектоногенезом, в том числе геодинамическими режимами формирования БП, именно эти режимы целесообразно принимать за основу будущей типизации.

Схема типизации постседиментационных преобразований осадочных комплексов находится в состоянии разработки [Япакурт, 2002]. Нами создан предварительный ее фрагмент (рис. 1), исходя из результатов стадиальных анализов терригенных комплексов палеозоя и мезозоя различных структур Восточно-Европейской, Западно- и Восточно-Сибирской плит и соседних подвиговых поясов.

Их породные преобразования полихистийны и неоднородны. Они структурированы в 2 типа: фоновый литогенез погружения (ЛП) и наложенная, вторичная, изменения (ВИ). Главный признак ЛП — вертикальная прогрессивная зональность аутогенного минералогенеза и трансформаций органического вещества, достаточно явно коррелируемые: с палеоглубинностью, палеотеппературным градиентом, а также с ростом давлений литостатических (P) и флюидных (Pф) при Pф = P. Важные факторы — скорость погружения (Vр), компенсируемость (кр) или некомпенсируемость (нк) впадины осадками. В соответствии с этими параметрами выделяются подтипы: ЛП-1.1 — Vр=10–100 м/млн лет; кр (внутрикрыточные амальгамы, синеклинзы); ЛП-1.2 — то же, с прерывистым малоамплитудным погружением (антеклизы); ЛП-2.1 — Vр=100–1000 м/млн лет, кр, либо слабая pk (рифтовенные и надрифтовые депрессии молодых плит); ЛП-2.2 — Vр>1000 м/млн лет, пк (пассивные континентальные окраины и др.).

Наложенные на литогенез ВИ, активизируемые притоками газово-жидких флюидов из нижележащих геосфер или оттогами внутриформационных флюидов в периоды перестройки тектонической структуры БП, в отличие от ЛП, вслед адафикальны. Они стимулируются импульсами усиления открытия породо-флюидной системы, при Pф>P, и коррелируются не с палеоглубинностью, но с палеотеппературными аномалиями. Эти подтипы: ВИ-1 — низкотемпературные (калоринизация, карбонатизация и др.) в платформенных чехлах над разломами фундамента или в сводах валов; ВИ-2 и ВИ-3 — высокотемпературные, в бортах рифтовенных впадин и складчатых поясах, соответственно.

Последние представлены неравномерными минерально-структурными нараственными эфегенезами, которые стадиально и по времени отделены от катагенеза. Их в дальнейшем целесообразно причислить к продуктам раннего метаморфизма, наложенного на ЛП в режиме эндогенных Ps–т–к активизация БП.

Как правило, единый бассейн за период своего эволюционирования претерпевал смену разных ЛП и ВИ, в соответствии с этапностью изменения свойственных данному БП геодинамических режимов.

Конкретизируем вышеизложенное отдельными примерами.

Эволюция процессов ЛП и ВИ в терригенных комплексах рифтовых и пострифтовых структур платформ проанализированы авторами [Япакурт и др., 2002] по материалам их детальных литолого-фацциональных и стадиальных исследований толщи пород раннего мезозоя Колотогорско-Урсейской впадины, вскрытой до глубин 7,5 км Юменской скважной СГ-6 на северо-западной окраине Западно-Сибирской эпигеолитической памяти [Япакурт и др., 1992; Япакурт, Горбачев, 1997; Япакурт и др., 1997; Япакурт и др., 1999; Япакурт, 2000; Япакурт, Сухов, 2000 и др.] и по данным работ других исследователей как в этом же районе, так и на иных объектах — в Днепрово-Донецкой и других впадинах Восточно-Европейской платформы [Перезон и др., 1982; Никитина, 1984; Лукин, 1989; Сухов и др., 1995; Юменская,..., 1996;
Рис. 1. Геодинамические типы литогенетических преобразований (ЛП) и вторичных изменений (ВИ) осадочных комплексов платформ и некоторых подвижных поясов.

В левом столбце изображены фоновые преобразования, в двух правых – наложеные изменения, последовательность возникновения которых отмечена стрелками; 1 – осадочные комплексы (показаны крапом), косая штриховка – зона их глубинно-катагенетических преобразований; 2 – стратиграфические границы (волнистые – перерывы седиментации); 3 – разломы; 4 – фундамент БП; 5 – магматические тела; 6 – миграция флюидов; 7 – изограды метагенеза – метаморфизма; 8 – гранитизация; 9 – направления движений дна или бортов БП (длина клиньев условно пропорциональна скоростям перемещения); буквенная аббревиатура – см. в тексте.
Сухов, 2002 и др.]. Общая все эти данные, можно прийти к нижеследующим заключениям.

Специфицичность литогенеза рифтогенных комплексов состоит, прежде всего, в том, что им свойственно многообразие постседиментационных минеральных-структурных парагенезов и многоэтапность их генерации. Главная причина: повышенные скорости захоронения осадков в рифтогенных депрессиях повлияли на незавершенность диагенетических процессов, вследствие чего не доведена до состояния равновесия система реакционнспособных минеральных, органогенных (ОВ) и флюидных компонентов вскоре после седиментации оказывалась в глубинных Р-Т условиях катагенеза. Это чрезвычайно благоприятствовало процессам корродирования или трансформирования значительной части кластогенных компонентов осадка и ускоряло процессу аутигенного минералогенеза.

Интенсивность минерально-структурных изменений в целом усиливается сверху вниз по разрезу, вплоть до появления известных признаков стадии позднего (глубинного) катагенеза, а затем (еще глубже) несколько ослабевает (рис. 2). При этом катагенетическая зональность не имеет четких внутренних границ из-за существенной анизотропии в степени измененности часто чередующихся в разрезе породы разной фациально-генетической принадлежности. Обычно самые заметные изменения прерываются песчаными отложениями фронта дельты, базов и кос морского мелководья. В их межзерновых промежутках (изначально отмытых от пелитового заполнителя) кристаллизуются аутигенные минералы (кварц, альбит, эпидоты, карбонаты, гидрослюдьи или хлориты), а песчаные зерна — искажаются микроструктурами гранитоидной коррозии (конформно-инкорпорационными, микростоплитовыми), либо регенерируются (рис. 3 Б). Прочные генотипы, насыщенные алевролитовым веществом, внешне выглядят малоизмененными, так как их существенные преобразования улавливаются в основном только прецизионными методами: это частичные трансформации терригенных слоев: биотита — в хлорит-мусковитовые пакеты, мусковита — в мусковиты иного состава) и глинистых минералов (смектитов — через смешанослоистые в гидрослюдисто-хлоритовые агрегаты и др.) — подобные описания см. в статье [Япаскурт и др., 1999].

Вышеупомянутыми трансформациями слои и смектитов на уровнях t° = 100 °C ± 20 °C отчасти объясним, изначально малопонятный, феномен нелинейного характера изменения степени литогенеза раннемезозойских пород СГ-6 с глубиной, который был показан в работах О. В. Япаскурта и В. И. Горбачева [1997]: явный возрастание всех признаков постседиментационной измененности пород сверху вниз, вплоть до интервала глубин 4,6−5,6 км (где в крепко сцементированных песчаниках установлены массивные структуры регенерации квадриковых зерен и рекристаллизационного бластеза), а затем — внешние признаки снижения степени измененности мезозойских пород вплоть до 50—60 см (рис. 2). Одна из причин — преобразование в низах разреза ионнообменных пород, насыщенных пелитовым веществом. Как известно, при попадании такого вещества в нарядные Р-Т обстановки глубинного катагенеза возникали условия, благоприятные для элиминационных процессов — с выделением массовых количеств H2O и SiO2, вследствие трансформации смектитов и терригенных биотитов в гидрослюдь и (или) хлорит, вместе с частичным растворением примесей карбонатов вследствие их гидролиза [Холодов, Недумов, 2001]. Газоводные флюиды и растворенный кремнезем выжимались в вышележащие пластины-коллекторы. Это было в нашем случае конгломераты, гравелиты и песчаники палеодельтовых фаций варагаитских, витимитских и береговой сиен-Т, и J, (рис. 2), которые оказались наиболее лиффицированными сравнительно с ниже- и вышележащими отложениями. По-видимому, данная особенность свойственна не только Колотогорско-Уреньгойской депрессии, но вообще большинству рифтогенных структур, так как предопределяется особенностями их геодинамических режимов на стадии седиментогенеза: на начальном этапе раздваивается осадконакопление в рифтогенных впадинах осуществляется при дефиците кластогенного материала. Впоследствии формируется контрастный рельеф водосборов, обеспечивая резкое погружение кластогенных осадков. Все это отразилось в своеобразие зональности типа ЛП-2.1, имеющей облик "веретена", если изображать степень измененности пород по принципу схемы, показанной на рис. 2.

Описанная выше последовательная картина общеформационного усиления, а потом кажущегося ослабления, степени катагенеза по мере роста глубин залегания пород рифтогенной впадины, местами бывает искажена нало-
Рис. 2. Схема интенсивности постседиментационных преобразований песчаников в разрезе СГ-6.
1–8 — литотипы (на стратиграфической колонке): 1 — аргиллиты, 2 — алевролиты, 3 — песчаники, 4 — конгломераты и гравелиты, 5 — угли, 6 — туфы, 7 — базальты, 8 — продукты латеритизации, 9–13 — состав обломков: 9 — литокласты и подчиненные им вулканокласты, 10 — вулканокласты основного состава, 11 — аркозовые компоненты, 12 — кварц, 13 — биотит; генотипы отложений: Д — фронтальные, А — авандельты; толщина вертикальных линий (справа) качественно отражает частоту встречаемости минеральных и структурных новообразований.

45
Рис. 3. Корреляция этапов аутигенеза и тектоногенеза Колтогорско-Уренгойской рифогенной палеоструктуры.
А – Кривая погружения Западно-Сибирского бассейна, построенная для района Тюменской сверхглубокой скважины. По А.М. Никишину и др. с дополнениями автора. На кривой погружения цифрами обозначены этапы аутигенного минералогенеза, соответствующие показанным на схеме Б.
Б – Схема этапности аутигенного минералогенеза и изменений микроструктуры и пористости песчаников триаса и юры Тюменской СГ-6 [по Япаскуру и др., 1997].
1, 2 – кварц; 3 – плагиоклаз; 4 – биотит; 5–9 – литокласты; 10 – иллит; 11 – хлорит; 12 – кальцит; 13 – доломит; 14 – открытые поры.
женными на литогенез ВИ двух категорий: высоко- и низкотемпературной. Первая из них (ВИ-2) оставляет следы локальных признаков стадии метагенеза: рекристаллизационного блазстеза кварца в песчаниках и появлением шпинелистых вростков мусковита поздней генерации там же (рис. 3 Б, стадия 6). Эти образования не всегда и не везде встречены. Но там, где они есть, их наличие фиксируется не обязательно в самых низких разрезах. Так, например, если обратиться к конкретному разрезу СГ-6, то здесь отчетливо фиксируются структурно-структурные парагенезы ЛП-2.1, ВИ-2 и ВИ-1, которые более или менее определенно коррелируются с этапом формирования и эволюционирования БП. Комплексы терригенных пород Т-1, возраста Колотогорско-Уренгойской впадины на протяжении рифтового (трис) и плотного (юра, мел, палеоцен) этапов погружались настолько интенсивно (рис. 3 А), что сразу же после завершения стадии седиментации, минуя 300-метровый интервал зоны дигенеза, они вскоре оказывались под покровом вышележащих толщ с мощностями от 1 до 6 км и более. Инверсионные перестройки позднекайнозойского этапа несколько припомнили эти отложения над прежним гипсометрическим уровнем (до 0,5-1 км), не выводя их при этом за пределы многокилометровых глубин залегания. Суммарное время пребывания исследуемых пород Т-1 на таких глубинах составило, в зависимости от их возраста, от 245 до 160 млн лет. В течение этого времени были сформированы не менее семи генераций минерально-структурных парагенезов. Последовательность их возникновения такова (рис. 3 Б): 1 — частичная корреляция терригенных зерен — главным образом слоистых, цепочечных, каркасных силикатов, седиментогенных карбонатов и формирование глининистых пленочных цементов; 2 — начало развития структур гравитационной коррелации между соприкасающимися обломочными компонентами (прямолинейных, конфигурационных и структурных контактов) совместно с ретроградацией кварцевых частиц; 3 — кристиализация разоблаченных агрегатов кальция, имеющих коррозионные контакты с аугенитными кварцем; 4 — формирование швов флюидоразрывы; 5 — кристаллизация вростков аугенитных слюд поздней генерации; 6 — рекристаллизационные блазстез на контактах песчаных зерен кварца, наблюдавшийся только в некоторых литотипах из стратиграфического интервала, по-граничного между трисом и юрой (процесс, фиксирующий эндогенный термальный активизм); а также 7 — повсеместное присутствие афацииных порфириобластических включений ромбоброзд воонита либо анкерита, наложенных на все вышеупомянутые минерально-структурные парагенезы.

Новообразования 1—4 характеризуют стадии ЛП (от слабого до глубинного катагенеза включительно). Новообразования 6 это продукты ВИ-2, сформированные под влиянием локального магматизма или притоков горячих глибинных флюидов (метагенез). Проблема локально повышенных палеотемператур была решена недавними исследованиями Ю.И. Галушкина, Н.В. Лопатина и Т.П. Емеш [Тюменская..., 1996, с. 279—286] посредством численного моделирования эволюции катагенеза органических компонентов по массовым замерам отражательной способности витринита из керна СГ-6. Наблюдавшийся этим исследователям нелинейный характер изменения отражательной способности витринита и, в частности, заметно повышенные значения R° глуше 5500 м, объясняется эффектом теплового воздействия на породы двух силов, внедрившихся в трисовское и раннеюрское время в фундамент ОБ. По-видимому, внедрение этих силов стимулировало гидротермальные процессы, охватывшие большую часть осадочного покрова, накопленного к тому времени (возможно это стимулировало процессы формирования 6-го минерального парагенеза, см. выше). Термальные процессы, вероятно, были проявлены дискретно, так как по данным цитируемых исследователей, релаксация теплового воздействия силов на термический режим осадков происходила быстро (через 0,3—0,7 млн лет после внедрения). Отложение триса и низов юры, испытывавшие это тепловое воздействие интурузий, достигли высокого уровня катагенеза еще в середине J., учитывая, что R° = 2,4—2,6 % в породах Т1-T2 и R° = 2,0—2,4 % для Т3-T1. Вышележащие породы не испытали воздействие локальных источников тепла, и поэтому считается, что в истории их катагенеза не было резких скачков, а ° не превышали 125—150 С°, и степень преобразования OB пород J, достигала 1,1—1,5 % R°.

Итак, имеются веские основания предполагать воздействие на ранней стадии погружения пород локальных источников тепла, усилиявших зональность типа ЛП-2.1. Судя по литературным источникам, это закономерность общая для рифтовых палеобассейнов. При
влеек данные А.Е. Лухина [1989], Г.Н. Порошко и др. [1982], можно развить это положение нижеследующим тезисом. Для рифтовых БВ характерна неоднородность латеральной измененности однотипных отложений вскрест простирания БВ: на прибрежных его участках (над разломами и возле них) породы преобразованы на один или несколько порядков сильнее, чем в осевых зонах впадин.

Другая (низкотемпературная) разновидность — ВИ-1, известная в литературе как «регрессивно-эпигенетические» изменения, проявленная всюду. Она обусловлена либо частичным корролированием аутигенных минералов и их каолинизации (депрессионная пород), либо метасоматической карбонатизацией, децилифацией, флюоритизацией и др. (усиление цементации). Данные процессы причинно обусловлены этапами инверссионнотектонических перестроеек структуры БВ, провоцирующих отток внутриформационных флюидов, либо приток таковых из фундамента БВ. К этой категории наложеных на ЛГ изменений относится наиболее поэзия, афразиальная, доломитизация (анкргмирующие) 7-го парагенеза (рис. 3 Б). Она связывается с низкотемпературными регрессивно-эпигенетическими процессами, которые могли быть вызваны импульсами тектонического воздымания Колтогорецко-Уреньгойского БВ в кайнозое. Инверссионно-тектонические перестройки структуры этого БВ, как известно, способствуют усилению открытости флюидной-породной системы, снижению РСо, и, как следствие, кристаллизации карбонатов из бикарбонатного раствора. Наличие больших количеств Mg и Fe в составе субргазовых свищевогенных компонентов обусловливалось в данном конкретном случае формированием магнезиальных или железистомагнезиальных разновидностей карбоната. Здесь мы наблюдаем слабое проявление процессов ВИ-1. А в иных случаях, например, в субмезового породах рифейских апластов по Московской синеклизе, преобладала существенная кальцитизация. Таким локально развиты процессы депрессии и каолинизации пород, создающие впечатление об их слабой (начально-калогенетической) измененности. Такие явления фиксируются над разломами кристаллического фундамента БВ и в сводах мелких антиклиналей, что свидетельствует о приуроченности их по времени к этапам пострифтовых структурно-тектонических перестроек.

Все это заметно усилило общую картину литогенетической зональности, вследствие чего в палеорифтовых БВ бывает нарушена прямая корреляция между интенсивностью преобразования пород и шкалой катагенеза ОВ. Изложенные выше признаки постседиментационной измененности отложений рифтовых БВ несколько варьируют в разновозрастных формациях в связи с вариациями состава седиментофона и меняющимися параметрами строения БВ (соотношениями их площадей с площадями водосборов, соотношениями темпов седиментации и др.) Многообразие структурно-минеральных парагенезов зависит также и от степени полимиктовости исходного седиментофона — основного поставщика вещества для аутигенного минералогеза. В поздорогонных депрессиях раннего мезозоя, например, седиментофен наиболее многокомпонентен, а аутигенез там более разнообразен по сравнению с олигомиктовыми комплексами суббарзовских поденоватов-кварцевых пород из рифейских апластов Восточно-Европейского краятона.

Итак, нами была рассмотрена одна из разновидностей литогенетических преобразований типа ЛГ-2 — интенсивного погружения дна впадин, совместно с наложенными породными измененными подтипов ВИ-1 и ВИ-2. Другие варианты, относящиеся к постседиментационным преобразованиям пород перекрываемых и передовых протибоов, а также континентальных окраин пассивного типа, их похожесть и различия охарактеризованы в недавней работе [Яласкурт, 2002]. Общие особенности всех этих образований сводятся к тому, что, несмотря на наличие разнотипных локальных вторичных изменений, внутри мощных разрезов БВ просматриваются более или менее явно выраженные признаки зональности аутигенного минералогеза и углефикации ОВ. Характер упомянутой зональности различен в зависимости от количественных сочетаний обломочных и глинистых осадков, от состава их седиментофона и других факторов. Однако признаки сменности новообразований раннего, среднего и позднего (глубинного) катагенеза здесь четко диагностируются с помощью общезвестных методических приемов стадиального анализа.

Противоположны вышеуказанным признакам типа ЛГ-1 — медленного погружения, который объединяет БВ с низкими скоростями проседаний дна, порядка 10—100 м/млн лет (рис. 1). Общая особенность — длительность стадий
диагенеза, т.е. процессов взаимного уравнове-
шивания компонентов органо-минерально-вод-
но-флюидной системы осадка в низкотемпера-
турной обстановке верхних (придонных) слоев
осадочного чехла БП. Компоненты успевают
прореагировать между собой (эти реакции реали-
зуются чрезвычайно вяло вследствие низких \(t^\circ \)).
Ныне мы получаем приток новой информации
относительно колоссальной роли влияния бак-
териальных процессов на деструкцию седи-
ментогенных компонентов и на минералобра-
зование при диагенезе. Эта система стремится
приблизиться к своему равновесному состоя-
нию, достигая такого не всегда и не повсеме-
стно. В разных фациях (отличающихся одна от
другой количественными и качественными со-
отношениями ОВ и многими другими парамет-
рами) диагенетические процессы реализуются
по-разному и приводят к весьма неоднako
вым конечным результатам. Следствием этого слу-
жит то, что при условии попадания погружаю-
щейся толщи пород в Р-т\(^{0} \) обстановки категе-
неза фациальный контроль продолжает опосре-
дованно сказываться на постдиагенетическом
аутигенным минералобразовании. Как извест-
но, рост \(t^\circ \) на глубине ускоряет межкомпонент-
ные химические реакции примерно вдвое при
каждом возрастании \(t^\circ \) на 10 °C. Однако здесь
набор минеральных и органических компоне-
тов, взаимодействующих друг с другом, не
столь многообразен и не столь хаотичен, как в
случаях интенсивных погружений (ЛП-2). Ком-
плекс постдиагенетических минерально-органо-
ческих компонентов при ЛП-1 регламентирован
фациальной принадлежностью пород. Поэтому
типовые для стадии категенеза схемы зональ-
ной сменяемости минеральных парагенезов
сверху вниз по разрезу (как бы отражающие
нарастающие с глубиной Р-т\(^{0} \) факторные влия-
ния) в случае ЛП-1 проявлены не столь четко,
как при ЛП-2. Здесь зоны постседиментацион-
ного минералобразования между собой име-
ют весьма "расплывчатые" (растянутые до
многих сотен метров по разрезу) границы. Зато
всюду очевиден фациальный контроль аутиген-
ного минералогенеза, создающий местами до-
вольно "пеструю" картину сменяемости неоди-
наковых минеральных парагенезов по прости-
ранню, в залегавших на одинаковых глубинах
породных ассоциациях.
Данный тип постседиментационных пре-
образований объединяет два подтипа, присущих
разным геодинамическим режимам: ЛП-1.1 —
вялого, компенсируемого осадками, погружения
(осевые зоны синклиз) и ЛП-1.2 — прерывис-
тых малоамплитудных погружений с частыми
перерывами седиментации (на антеклизах).
Относительно последнего до недавнего времен-
ни информации было немного, а потому рассмотрим особенности ЛП-1.2 подробнее.
Своеобразие постседиментационных пре-
образований платформенного чехла на антек-
лизах анализируется по результатам наших ра-
бот в соударении с исследователями ГНН
РАН — М.Г. Леоновым, С.Ю. Колоджным,
С.Ю. Орловым и Воронежского Государствен-
ного Университета — В.М. Ненаховым и др.
в пределах Воронежской антеклизы. Становится
очевидным, что процессы седименто- и лито-
генеза отложений фанерозоя Воронежской ан-
теклизы в своей совокупности обусловливали
силавацию чехла кратона, при которой вало-
вые минеральные и химические составы отло-
жений смешаются (сравнительно с кристили-
ческим фундаментом) в сторону общей гомо-
генизации — возрастания количеств SiO\(_2\) и K\(_2\)O
попутно с уменьшением мафических компонен-
тов [Леонов и др., 2006]. Начальные симптомы
силавации обусловливались специфическими
особенностями стадии гипогенной мобилиза-
ции осадочного вещества в питающих провин-
циях суши и на стадии седиментогенеза в чрез-
вычайно мелководных бассейнах. Итоги — оби-
щение кор выветривания и следов подводного элпо-
вирования осадков, их монокомпонентность,
либо олигомиктовость, т.е. высокая минерало-
гическая "зерлость". Процессы эти не были
линейными. Известны, в частности, вспышки
базальтового вулканизма в девоне, локально
повлиявшие на возрастающую полимиктовость,
которая, однако, не затмила очевидной тенденции
"вызвревания" осадочного вещества на протя-
жении всего фанерозоя (к тому же постседи-
ментационная силавация загролила аутигенный
минералогенез даже в цементе вулканокласти-
тов основного состава — см. ниже).
Постседиментационные преобразования
чехла антеклизы характеризуются весьма нео-
днородной литифицированностью его осадков,
diskректностью и многофакторностью аутиген-
ного минералогенеза, который был проявлен вне
зависимости от нахождения породы в низким,
средним либо верхнем интервалах разреза. То
есть литификация не коррелируется с палеоглу-
бинами тектонического погружения (импульси-
вного, неравномерного, прерываемого этапами

49
воздыми) осадочных толщ исследуемого БП. Сущность процессов этой литификации такова. Как было сказано выше, выполняющие БП осадочные формации являются сами по себе флюидогенерирующими системами, и, одновременно, они могут проникать потоки флюидов из нижележащих комплексов. Этому способствуют некоторые новообразования в литифицированных слоях: стилолиты, тесты клаива-жа и тектоначески ослабленные зоны различной морфологии. Малейшие нарушения баланса компонентов в такой органо-минерально-флюидной системе, обусловливаемые перестройками тектоначеской структуры БП, стимулируют аутогенны минералогенез и (или) деструкцию компонентного состава осадочных пород – корролидирование карбонатов, кварца, каракснных и непечённых силикатов; трансформации кристаллических решеток глинистых и других минералов. То есть, постпоседнятиционные преобразования отложений реагируют (явно или малозаметно) на любые изменения геодинамических режимов, как отмечалось в начале нашего сообщения. В данном конкретном случае функции литогенетические преобразования отвечал с момента новой стадии катагенеза. Вертикальная зональность аутогенеза практически не заметна. Здесь, при сочетании малых Vp и kr, фактический контроль над ней доминирует, и смена минеральных парагенезов бывает выражена по латерали отчетли-вее, нежели в разрезе БП.

Вышеизложенное относится и к фоновым ЛП исследуемой антеклизы, однако, ЛП там существенно искажены локальными БП, создающими довольно “мозаичную” картину породных изменений, в которой пластичные глины сочетаются с крепко литифицированными разностями пород. ВИ, в отличие от ЛП, как правило, афациональны. Они стимулируются импульсами усиления открытости породо-флюидной системы, при P2>>P1, и коррелируются не с палеоглубинностью, но с палеотермепературными аномалиями. Это типы: ВИ-1 – низкотемпературные (калоинизация, карбонатизация, окремение над разломами или в сводах дислокаций); ВИ-2 – высокотемпературные (метагенетические) изменения типа рекристаллизационно-бла-стических в кварце, с прецизионизацией ин-литов в слюды политика 2M, и др. Они стади-ально обособлены от ЛП, но обособленность их бывает камуфлированной и устанавливается только методикой комплексного стадиального анализа. Относительно природы распространен-ных в чехле антеклизы ВИ существует разные мнения: есть доводы о глубино-термальном их генезисе [Цеховский, 2000], есть и контрагрументы. Очевидно, здесь присутствуют оба типа (ВИ-1 и ВИ-2). Но, независимо от их сочетания, на сегодня важен факт, эмпирически установленный: контрастная, неоднородная по интенсивности и не коррелирующая со стратиграфическим положением литификация, с явным при- вносом вещества извне (возможно, из соседних слоев или, по ослабленным зонам, из нижеле-жаших геосфер). Пример: цементация залега-ющими внутри глин пластов вулканомиктовых песчаников (“грундитов”) с базальтовой кластер-ной) и дренирования фаций палеоист и агломератов-скелетных свит Dfr в карьере Павловского место-рождения (на юго-восточном склоне антекли-зы). Там, вокруг редких полукатаных обломков вулканической породы, развиты мощные (толщиной срав-ненные с диаметрами обломочных зерен) ретернатуральные кварцевые оторочки и нарости, це-ментирующие ближайшие обломки основных эфузивных (рис. 4). Встречен также ренигерата-рованный плагноклаз. Ситуация несколько парадоксальна – учитывая малый процент SiO2 в этих полиомиктовых породах и слабую степень их постпоседнятиционного преобразования (на-чало катагенеза, так как органическое вещество не превысило здесь буроугольной стадии, а ко- сти рыб почти не фоссилированы), регенера-ция кларка и плагноклазов выглядит явлением аннимальным. Для них потребны варианты меха-низмов: 1) гравитационная коррексия силикат- ных зерен под нагрузкой многокилометровой толщ пород при t>=150 °C (условие, не отвечающее геологической реальности); 2) трансформация смектитов в гидрослюд в или хлориты с высвобождением внутрикристаллических масс H2O и SiO2 с превращением глин в аргиллиты при t=100°±20 °C (условия глубинного катаге- неза, отвечающие маркам газовых углей, не свойственных региону) и 3) подпитка породы фрушерамими, насыщенными SiO2, гидратермами. В нашем случае реален только 3-й вариант. Кремензезма в подстилающих “вьскозозелых” породах D3, в краях выветривания на докембрийском фундаменте достаточно, а восхождение инфильтрационных флюидов вовлеч активизируемых разломов не исключено.

Очаговая литификация пород чехла пред-ставляется как бы зачаточным импульсом про-цесса приращивания предкометаморфическому из-
Рис. 4. Регенерация кварца и плагиоклаза в песчаниках дельтовых фаций встrebовской свиты франского яруса юго-восточной части Воронежской антеклизы. Фотография шлифа, увеличение 100.

мененных осадков к фундаменту антеклизы. Это заметно, в частности, в Михайловском карьере КМА, где в толще «переотложенных» рыхлых глинисто-карбонатно-глинистых продуктов раннепалеозойской коры выветривания (озерно-болотной накопления) находятся стратифицированные, горизонтально лежащие пласты крепко семетиринованных пород, внешним обликом мало отличных от образований докембрийского субстрата. Другой пример — мраморизованная биостромовых линз в низах D₂ там же. Третий — переход по простиранию кварцевых песков базального горизонта J₁ в кварцито-песчаники (интенсивно пиритизированные) вблизи блокового выступа кристаллического фундамента. Последний феномен можно объяснить результатом инфильтрационной разгрузки подземных вод близ антиклинальных сводов в конце мезозоя или в кайнозое; приводятся также аргументы относительно высокотемпературной биостромовых гидротермальных подтоков [Щеховский, 2000]. Независимо от признания одного из этих вариантов, итог один: локальная «метаморфизация» (точнее — литификация), превращающая последовательную смену зон катаценеза в калейдоскопическую. Масштабы и баланс перераспределения вещества в самом чехле нуждаются в своих оценках. Значимость таких процессов подтверждается, помимо вышеизложенного, наблюдениями в известниках D₁ Сибирского карьера (г. Липецк) массовой стилолитизации, служившей модельным донором вещества, потребного для литификации глиннисто-терригенных слоев. Малозаметные, но не менее существенные, резервы для того же представляют: коррозия силикатов и кварца, видимая только микроскопически, и трансформации глинистых компонентов, выявляемые прецизионными методами. Их предстоит еще переосмыслить в аспекте: достаточно ли этих внутриформационных резервов ЛП, и насколько реальным мог быть вклад в литификацию от возможной эндогенной подпитки чехла веществом из недр? Но уже сейчас, по итогам нынешних работ, можно заключить, что усиленное перераспределение минеральных масс при постседиментационной литогенезе чехла Воронежской антеклизы служит, по-видимому, одним из ранних предвестников многоэтапного явления вертикальной аккреции в ее трактовке М.Г. Леоновым и др. [2000]. Вертикальная аккреция в данной платформенной структуре проявилась в своей зачаточной фазе, без завершения, свойственного иным геодинамическим режимам.

В заключение отметим, что здесь была затронута только часть актуальной научной проблемы. Принципы типизации постседиментационного литогенеза, вопросы соотношения фонаевых и наложенных породных изменений применимо к складчатым областям не рассмотрены. Авторы работают над этой задачей, используя материалы литологических исследований Верхояно-Кольского и фрагментов Альпийского складчатых поясов [Япаскура, 1999 и др.]. Уже сейчас становится очевидным, что после превращения БП в складчатую систему литогенетические преобразования усложняются высокотемпературными изменениями метагенетический слой ВН-3 (рис. 1). Они столь значительно оторваны от литогенеза погружения, проявлены дискретно. Их поэтому целесообразно рассматривать не как конечные продукты литогенеза, но как наложенные на литогенез арены периферийных зон метаморфизма, с которыми метагенетические новообразования связаны постепенными переходами. Это полностью согласуется с представлениями И.М. Сима-
Список литературы

Лукан А.Е. Генетические типы вторичных преобразований и нефтегазоантиклинали в аввалогенных бассейнах. Киев: ИНУАН УССР (препр.), 1989. 45 с.

Первощин Г.Н., Предвеченская Е.А., Косухина И.Г. Вещественный состав и катагенетические преобразования терригенных пород Кологоорско-Уренгойского метапелитига и его краевых частей // Литология резервуаров нефти и газа в мезоокских и палеоокских отложений Сибири. Новосибирск: СНИИГГ и МС, 1982. С. 78–82.

Япаскурт О.В., Парфенова О.В., Косоруков В.Л., Сухов А.В. Генезис и стадиальные преобразования слюд и хлоритов в разных геодинамических условиях литогенеза // Вестник МГУ. Сер. 4. Геология. 1999. № 5. С. 3–12.

Рецензент доктор г.-м. наук Л.В. Анфимов